Images RSS

Q Continuum simulation

Each frame in this image (click for the full view!) represents a different stage in the simulated evolution of our universe, ending at present day in the rightmost panel. In a recently-published paper, Katrin Heitmann (Argonne National Laboratory) and collaborators reveal the results from — and challenges inherent in — the largest cosmological simulation currently available: the Q Continuum simulation. Evolving a volume of (1300 Mpc)3, this massive N-body simulation tracks over half a trillion particles as they clump together as a result of their mutual gravity, imitating the evolution of our universe over the last 13.8 billion years. Cosmological simulations such as this one are important for understanding observations, testing analysis pipelines, investigating the capabilities of future observing missions, and much more. For more information and the original image (as well as several other awesome images!), see the paper below.

Citation:

Katrin Heitmann et al 2015 ApJS 219 34. doi:10.1088/0067-0049/219/2/34

RCW 103

This is a three-color X-ray image taken by Chandra of the supernova remnant RCW 103. This supernova remnant is an unusual system: it’s young, but unlike other remnants of its age, metal-rich ejecta hadn’t previously been discovered in it. In this paper, Kari Frank (Pennsylvania State University) and collaborators analyze the three deepest Chandra observations of RCW 103 and find the first evidence for metal-rich ejecta emission scattered throughout the remnant. Their analyses also help to constrain the identity of the mysterious compact stellar object powering the remnant. In this image, red = 0.3–0.85 keV, green = 0.85–1.70 keV, and blue = 1.7–3.0 keV; click on the image for the full view. For more information and the original image, see the paper here:

Kari A. Frank et al 2015 ApJ 810 113 doi:10.1088/0004-637X/810/2/113.

coronal loops

This is an extreme ultraviolet image of NOAA Active Region 1283, as seen by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The region in this image consists of two coronal loops embedded within the same coronal magnetic arcade. Rekha Jain and collaborators observed these loops oscillate while a wavefront, plotted on top of the image in white, passed through them. The oscillations were triggered by a nearby solar flare, and studying them can give us information about the properties of the coronal loops that we wouldn’t otherwise be able to measure. For more information and the original image, see the paper below.

Citation:

Rekha Jain et al. 2015 ApJ 804 L19 doi:10.1088/2041-8205/804/1/L19.

1 18 19 20