What Are Starspots Like on Sun-like Stars?

25

Editor’s note: This article, written by AAS Media Fellow Kerry Hensley, was originally published on Astrobites.

Are All Sun-like Stars the Same?

We refer to stars with approximately the same spectral type as the Sun as “Sun-like,” but how similar are they really? One way to gauge this is by studying the stars’ magnetic activity, like their starspots (relatively cool areas of the stellar photosphere where magnetic flux bubbles out of the surface) or stellar flares (sudden releases of energy in the form of lots and lots of photons — all the way from X-ray to radio).

sunspots

Figure 1: The starspots studied in this paper are generally much larger than a typical sunspot. A particularly large sunspot, spanning 80,000 miles, is shown here. [NASA/SDO]

Some Sun-like stars have been observed to unleash so-called superflares, which are thought to arise from processes similar to garden-variety solar flares but have 10,000 times the energy. Has the Sun ever set loose a superflare? Could it do so in the future? It’s not clear yet, but it’s an important question to ask, since a superflare could seriously disrupt the satellite networks we’ve come to rely on. By studying flares on other Sun-like stars, we can get a better sense of the similarities and differences between the Sun and the Sun-like stars scattered across the universe.

Superflares can also tell us something about how magnetic fields are generated and configured on other stars; superflares (and solar flares) seem to be linked to starspots (see Figure 1), which are a visible manifestation of a star’s coiled and twisted magnetic field. By studying the starspots that superflares are linked to, we can gain a better understanding of the magnetic dynamos of other stars.

However, our telescopes don’t have the resolution necessary to directly image starspots on other stars. How do we study activity on distant stars?

Kepler: Not Just for Planets!

Led by Kosuke Namekata (Kyoto University, Japan), the authors of today’s paper used Kepler space telescope (may it orbit in peace!) light curves for over 5,000 stars to study starspots on Sun-like stars. In order to identify starspots, the authors searched for repeated dips in the Kepler light curves — signaling the spots transiting the visible face of the stars as they rotate. In total, they were able to track 56 sunspots as they formed and faded (see Figure 2).

Kepler light curve

Figure 2: Example Kepler light curve (a), along with the residual between the data (black) and the fit (red) in panel (b), the phase of the starspots (c), and the depth of the minima as a function of time (d) for a star from this study. [Namekata et al. 2018]

For each of the starspots, the authors calculated the area (from the depth of the brightness dip), the lifetime (from how long they were able to track the presence of the brightness dips), and the rate at which it emerged and decayed (from how the starspot area changed over time).

The authors found that starspots tended to emerge and decay at rates consistent with what we expect from studying spots on our own Sun, which hints that starspots on stars near and far are governed by the same processes. They also found that the lifetimes of the individual spots (10–350 days) tended to be shorter than expected given their area (0.1–2.3% of the stellar surface), but cautioned that the starspot lifetimes could be underestimated because of the difficulty of detecting the spots just as they are emerging and fading. Figure 3 shows a comparison of the areas and lifetimes of sunspots and starspots.

Starspot lifetime versus area

Figure 3: Starspot lifetime versus area for both Sun-like stars (filled circles) and the Sun (black and grey crosses). Sunspots tend to follow the Gnevyshev-Waldmeier (GW) law, while starspots on other stars tended to have shorter lifetimes for a given area. [Namekata et al. 2018]

The lifetimes of the largest starspots — those with areas of about 10,000 millionths of the solar hemisphere (about 30 billion square kilometers) — tended to be about a year. The rate of superflare occurrence also seems to be about once a year, suggesting that the presence of a large starspot is a strong indicator that a superflare will be released.

We still have a long way to go toward understanding magnetic activity, starspots, and superflares on Sun-like stars, but today’s paper gets us one step closer. Hopefully, the wealth of Kepler data will continue to provide discoveries like this for many years to come!

Citation

“Lifetimes and Emergence/Decay Rates of Star Spots on Solar-type Stars Estimated by Kepler Data in Comparison with Those of Sunspots,” Kosuke Namekata et al 2018 ApJ, in press. https://arxiv.org/abs/1811.10782

25 Comments

  1. Pingback: AAS Nova – New

  2. Pingback: The Sun: study shows its less active than sibling stars – heres what that could mean – The Conversation UK – Jumbuck News

  3. Pingback: study shows it’s less active than sibling stars – here’s what that could mean – My Local Pages

  4. Pingback: The Sun: study shows its less active than sibling stars – heres what that could mean - The Conversation UK • News around the World

  5. Pingback: The Solar: examine reveals it is much less lively than sibling stars – here is what that would imply - GOOGLE HITS

  6. Pingback: The Sun: Study Shows It's Less Active Than Sibling Stars – Here's What That Could Mean - The Conversation UK - GET ATEST News, Sport , Entmt, Technology , Movie Etc...

  7. Pingback: The Solar: examine reveals its much less energetic than sibling stars – heres what that might imply – The Dialog UK – Top News Broadcast

  8. Pingback: The Solar: examine reveals its much less energetic than sibling stars – heres what that would imply – The Dialog UK – Top News Broadcast

  9. Pingback: The Sun: study shows it’s less active than sibling stars – here’s what that could mean – SoftMachine.net

  10. Pingback: The Sun is less active than sibling stars, study shows - here's what that could mean - Our Planet

  11. Pingback: The Sun is less active than sibling stars, suggesting it’s entering old age – Ranzware Tech NEWS

  12. Pingback: The Sun is less active than sibling stars, suggesting it's entering old age - Maldio

  13. Pingback: The Sun is less active than sibling stars, suggesting it's entering old age | World Best News

  14. Pingback: The Sun is less active than sibling stars, suggesting it's entering old age - Bestgamingpro

  15. Pingback: The Sun is less active than sibling stars, suggesting it’s entering old age – NewsForTime

  16. Pingback: Le soleil est moins actif que les frères et sœurs, ce qui propose qu'il entre dans la vieillesse - Technologeek

  17. Pingback: The Sun is much less energetic than sibling stars, suggesting it is getting into previous age - AIOSEO

  18. Pingback: The Sun is less active than sibling stars, suggesting it’s entering old age - Science and Tech News

  19. Pingback: The Sun is less active than sibling stars, suggesting it’s entering old age – DLSServe

  20. Pingback: The Sun is less active than sibling stars, suggesting it’s entering old age – Elevasi.com

  21. Pingback: The Sun is less active than sibling stars, suggesting it's entering old age | sup.news

  22. Pingback: The Sun is less active than sibling stars, suggesting it’s entering old age – Galazio.club

  23. Pingback: The Sun is less active than sibling stars, suggesting it’s entering old age - UltraWebSA

  24. Pingback: study shows it's less active than sibling stars – here's what that could mean - The Global Centre for Risk and Innovation

  25. Pingback: Super-Earths discovered orbiting a red dwarf star - Cosmos Magazine