AAS News RSS

TRAPPIST-1

Editor’s note: AAS Nova is on vacation until 18 September. Normal posting will resume at that time; in the meantime, we’ll be taking this opportunity to look at a few interesting AAS journal articles that have recently been in the news or drawn attention.

If you missed the New York Times publication of this video back in May, it’s definitely worth a watch! The video, created by Matt Russo (CITA, University of Toronto), Dan Tamayo, (University of Toronto Scarborough), and Andrew Santaguida (RVNNERS), provides a musical description — a sonification — of the TRAPPIST-1 exoplanetary system. It was produced in conjunction with a study led by Tamayo that was published in ApJ Letters, exploring the dynamical stability of the TRAPPIST-1 system. The video has since been entered in a science communication competition.

Original paper: Daniel Tamayo et al 2017 ApJL 840 L19. doi:10.3847/2041-8213/aa70ea
New York Times article: The Harmony That Keeps Trappist-1’s 7 Earth-size Worlds From Colliding

And if you want still more coverage of the TRAPPIST-1 system, you may be interested in the recent paper by Adam Burgasser (UC San Diego) and Eric Mamajek (NASA JPL and University of Rochester) exploring the age of the system. Spoiler alert: TRAPPIST-1 and its planets are older than our solar system!

Original paper: Adam J. Burgasser and Eric E. Mamajek 2017 ApJ 845 110. doi:10.3847/1538-4357/aa7fea
Sky & Telescope article: New Age Estimate for TRAPPIST-1

solar eclipse 1854

Editor’s note: AAS Nova is on vacation until 18 September. Normal posting will resume at that time; in the meantime, we’ll be taking this opportunity to look at a few interesting AAS journal articles that have recently been in the news or drawn attention.

Can’t get enough eclipse news? Check out this coverage of the solar eclipse of 1854! Special thanks to Tumblr blogger Nemfrog for digging this out of the archives.

These two sets of photographs both capture the annular solar eclipse that occurred on May 26, 1854, passing close to the U.S./Canada border. The photographs come from articles (linked below) published by two scientists who both watched the eclipse from the state of New York and made extensive measurements of its properties.

Stephen Alexander’s team was able to capture spectacular images demonstrating the annular eclipse during totality. William H.C. Bartlett’s team captured the eclipse during various moments from the point of first contact to that of last contact, making detailed measurements of the Sun’s position in 19 stages throughout this process.

The photographs shown here were taken just three years after the very first successful photograph of a solar eclipse was taken — this was a very new endeavor at the time!

solar eclipse 1854

Daguerrotype published by Stephen Alexander of the total solar eclipse of May 26, 1854. [Alexander 1854]

solar eclipse of 1854 2

Photographs published by William H. C. Bartlett of the total solar eclipse of May 26, 1854. [Bartlett 1854]

Citation

Stephen Alexander 1854 AJ 4 75. doi:10.1086/100439
W. H. C. Bartlett 1854 AJ 4 77. doi:10.1086/100450

white dwarf and pulsar

Editor’s note: This week we’re in Sun Valley, Idaho at the 16th meeting of the AAS High Energy Astrophysics Division (HEAD). Follow along to catch some of the latest news from the field of high energy astro!

Session: Black Holes Across the Mass Spectrum

Chandra galactic center

A Chandra X-ray view of our galactic center. [NASA/CXC/MIT/F.K. Baganoff et al.]

Lia Corrales (University of Wisconsin-Madison) opened the first session on Wednesday by discussing Sgr A*, the supermassive black hole at the center of our own galaxy. Compared to the supermassive black holes we discussed on Tuesday, Sgr A* is extremely dim — but it does actively accrete matter, and its flux is therefore variable, exhibiting occasional flares. The problem? Studying this variability is tricky, because our sightline to the galactic center is subject to dust scattering, which can create apparent variability that’s not due Sgr A*. Corrales tackled this problem by making measurements of X-ray transients in the galactic center to map the dust that lies along the sightline to the region. She and her collaborators found that dust scattering within 15 arcseconds of the galactic center accounts for a variation of 6–12% the flux of the source, with variability on timescales of hours — which means this is something we definitely have to account for when studying Sgr A*.

Sjoert Van Velzen (Johns Hopkins University) and Stephen Cenko (NASA GSFC) both discussed aspects of tidal disruption events (TDEs). Van Velzen addressed the question of how to tell whether the events we’re detecting are really TDEs, or if they’re imposters — accretion disk instabilities, a new kind of supernova, or collisions of stars on bound orbits around a black hole. Van Velzen pointed out that at high black-hole mass (>108 solar masses), stars will be swallowed whole instead of torn apart (remember this if you plan to fall into a black hole: it’s better to choose a high-mass one!), so we expect to see a turnover in the distribution of TDEs at high black-hole masses. Though we have only 17 observations of optical/UV TDEs, Van Velzen showed that we do, indeed, see signs of this turnover — indicating that these events are TDEs rather than impostors.

Cenko explained the sleuthing we can do with the ultraviolet spectrum from TDEs: we can infer from the emission lines that TDE disks are much more radially compact and dense than typically seen in quasars. Consistent with what we learned in Tuesday’s talks, there’s evidence in the ultraviolet spectra for low-velocity, outflowing material. And we may even be able to use abundances measured in the UV spectra to learn about the type of star that was disrupted in the event.

Giorgio Matt (University Roma Tre) moved the discussion to smaller black holes, providing an overview of what we hope to learn about microquasars with the Imaging X-ray Polarimetry Explorer (IXPE), a new mission that will launch in early 2021. IXPE will simultaneously provide imaging, spectroscopy, timing, and polarimetry measurements of sources — and the polarimetry is what will make this spacecraft unique. Matt walked us through three things that X-ray polarimetry may help us to learn about microquasars, stellar-mass black holes that are actively accreting mass from a companion star, exhibiting accretion disks and jets:

  1. The geometry of the corona
    Microquasars are expected to have coronae just like AGN, and we may be able to constrain their geometry based on the amount of polarization we detect from them.
  2. The role of the jet
    If jets are present and play an important role, then we expect to see much higher polarization levels.
  3. The spin of the black hole
    Measuring the polarization angle will provide a new way of identifying the black hole’s spin.

Session: Synergies with the Millihertz Gravitational Wave Universe

BH mass ratios

The distribution of black-hole mass ratios in Bellovary’s simulations of mergers of low-mass galaxies. The ratios are most commonly 1:10 or even lower. [Bellovary 2017]

In this session, Jillian Bellovary (CUNY – Queensborough Community College) began by expanding on a topic first introduced on Monday: growing supermassive black holes in the early universe. Bellovary models this process using cosmological simulations, and she focuses on the direct-collapse method: low-metallicity, low-angular-momentum, massive clouds of gas collapse to form black holes, which then merge to grow. Bellovary and collaborators find that the massive black holes in low-mass, dwarf galaxies are often not directly in the center of the galaxy — they wander around, and ~50% end up off-nuclear. These have very low accretion rates (since they aren’t where the gas is); this will make them difficult to find, but observing them provides us with information about the original seed mass, since less than 10% of their mass is accreted gas. The mergers between massive black holes in low-mass galaxy environments will rarely be 1:1 mass ratios; it is much more common that the mass ratios are 1:10 or lower — which will influence the gravitational-wave signature we can expect to see from these. The upcoming LISA gravitational-wave mission will be critical for detecting these mergers from our early universe.

The next talk was given by Thomas Maccarone (Texas Tech University) on the topic of ultracompact binaries: binaries consisting of two compact objects, including white dwarfs, neutron stars, or black holes. Our current knowledge of double compact objects is very limited, as we have very few detections of these systems thus far. LISA will provide a look at some of these ultracompact binaries — and LISA’s frequency band is lower than Advanced LIGO’s, meaning that the binaries can be detected at earlier evolutionary stages, when they are evolving slowly enough for electromagnetic follow-up. LISA’s observations of these systems will help us to do astronomy with gravitational waves, including exploring binary evolution, common envelopes, kicks, etc., and probing mass distributions in globular clusters and galaxy clusters.

Last up, Tamara Bogdanovic (Georgia Institute of Technology) walked us through the merger of two galaxies and the supermassive black holes at their centers — mergers that LISA will be able to detect when it launches. Galaxy mergers consist of four stages:

  • Stage 1: Galactic merger (separation: 100,000–1,000 pc, timescale: Gyrs)
  • Stage 2: Interactions with gas and stars (separation: 1,000–10 pc, timescale: Myr–Gyr)
  • Stage 3: Gravitationally bound binary (separation: 10–0.01 pc, timescale: Myrs–Gyrs)
  • Stage 4: Gravitational-wave phase and coalescence (separation: <0.01 pc, timescale: short!)
Binary Black Holes

Two supermassive black holes in the process of merging. [P. Marenfeld and NOAO/AURA/NSF]

How do we explore the later-stage mergers? Bogdanovic reviewed the ways that we can observe sub-parsec supermassive black-hole binaries. Direct imaging is possible, though difficult; we’ve detected one candidate using this method. Searching for quasiperiodic variability in photometry is another option, and ~150 candidates have been found in this way. These systems also have a spectroscopic signature, and another ~dozen candidates have been found by searching for this. Lastly, future detections and non-detections of gravitational-wave emission from final merger stages may result in the discovery of additional systems and provide constraints on those detected by electromagnetic means.

Dissertation Prize Talk: Stellar Death by Black Hole: How Tidal Disruption Events Unveil the High Energy Universe

HEAD Dissertation Prize

2017 HEAD Dissertation Prize winner Eric Coughlin.

This year’s HEAD Dissertation Prize winner is Eric Coughlin, who did his PhD at University of Colorado Boulder and is now an Einstein Fellow at UC Berkeley. Coughlin spoke on his theoretical work studying tidal disruption events (TDEs). He noted that in TDEs, immediately after a star is torn apart and begins to accrete onto the supermassive black hole, an initial intense phase of hyperaccretion occurs. Can accretion disks even hold themselves together under this extreme release of energy?

Coughlin and his PhD advisor, Mitch Begelman, came up with a model for how these disks survive: the disks puff up into giant spherical shapes, and then any excess accretion energy is funneled from the disk into bipolar jets. They termed the puffed-up disks “zero-Bernoulli accretion flows” — ZEBRAs for short. Coughlin showed how various simulations have backed up this model, demonstrating the formation of these puffed up, spherical disks as material falls back on a supermassive black hole after the tidal disruption of a star.

Coughlin concluded his talk by presenting simulations from his more recent work, in which he explores what TDEs look like when the star is disrupted not by an isolated black hole, but by a supermassive black hole binary. Initially, the star only experiences the effects of the black hole that is disrupting it, but within short order the tidal stream of material encounters the second black hole and forms a spectacular mess of debris in beautiful patterns. This can lead to re-brightenings in the observed light curve, creating a distinctive signature that should allow us to differentiate these events from disruption events from isolated black holes. You can check out his stunning simulations yourself in the video below (you may need to give it a minute to load, but it’s worth it to watch through the end), and you can visit his website for more movies of his work.

Session: Missions & Instruments

Wednesday afternoon’s first session provided useful introductions to a number of missions, instruments, and data analysis tools for high-energy astrophysics. These included:

  • Chandra Interactive Analysis of Observations (CIAO)
    Antonella Fruscione (Smithsonian Astrophysical Observatory) discussed this modern data-analysis system for examining images produced by the Chandra X-ray Observatory.
  • 360° movies of X-ray data in the galactic center
    Christopher Russell (NASA GSFC) shared his unusual 360° movies of our galactic center’s inner parsec, created from hydrodynamic simulations that model X-ray emission from hot stars in the center of the galaxy. You can check it out yourself by visiting this link on your computer, or by searching for “Christopher Russell astronomy” in the youtube app on your phone (recommended for the full 360° experience!).
  • Compton Spectrometer and Imager (COSI)
    Clio Sleator (SSL, UC Berkeley) introduced this balloon-borne soft gamma-ray detector, which floated for 46 days in 2016. Data from this run included observations of the Crab pulsar and the gamma-ray burst GRB 160530A.
  • LISA Pathfinder

    Artist’s illustration of LISA Pathfinder. [ESA/C.Carreau]

    LISA Pathfinder
    James Thorpe (NASA GSFC) provided us with an overview of the pathfinding mission for the Laser Interferometer Space Antenna (LISA). LISA Pathfinder was intended to test some of the technologies required for LISA, which will rely on incredibly high-precision engineering. Initial data from this pathfinder mission have shown that it’s exceeded the requirements for LISA, which is extremely promising for the future mission!
  • Arcus
    Randall Smith (Smithsonian Astrophysical Observatory) gave us a cheerful overview of Arcus, a free-flying X-ray satellite that was recently selected by NASA for a concept study as a Medium-Class Explorer mission. If ARCUS makes it to the final phase of the proposal process and launches (as early as 2022), it will significantly improve on views from current missions like Chandra, providing us with new information on the formation and evolution of clusters of galaxies, black holes, and stars.
  • All-sky Medium Energy Gamma-ray Observatory (AMEGO)
    Sara Buson (NASA GSFC) presented on the mission AMEGO, soon to be proposed to the 2020 Decadal Review, which would provide an all-sky survey of emission in the MeV energy band. AMEGO will provide at least a 20x improvement on sensitivity relative to its predecessor, COMPTEL, allowing us to better explore sources like MeV blazars. We hope to use AMEGO to shed light on supermassive black-hole growth, the accretion–jet connection, the MeV background, and much more.
lensing BBH

Schnittman’s simulations illustrate the strange lensing effects that occur when two accreting black holes orbit each other. [Schnittman 2017]

Session: SNR/GRB/Gravitational Waves

This session was termed by the first speaker, Jeremy Schnittman (NASA GSFC), as “the miscellaneous session.” The first two talks focused on intriguing aspects of gravitational-wave astronomy. Schnittman presented his work modeling the complex radiation physics in the time-dependent spacetimes of a binary compact-object system. What would we expect to see when two black holes accreting gas are locked in a close binary? Schnittman modeled this with a radiation transport calculation of the gas accretion onto the merging binary black holes, and then used ray-tracing of photons to determine what a distant observer would see.

Cecilia Chirenti (UFABC) discussed the gravitational waves that are emitted from highly eccentric neutron-star binaries — not from the binary as a whole, but from the oscillation modes that are induced in the individual neutron stars as a result of their close passages. She demonstrated that the proposed Einstein Telescope should be able to detect up to tens of these events per year, and we may be able to use these detections to help constrain the neutron-star equation of state.

The next two speakers discussed various aspects of modeling the aftermath of supernovae. Tea Temim (Space Telescope Science Institute) presented her work simulating the interaction of a pulsar wind nebulae (which is generated by the pulsar embedded deep within a supernova remnant) with the supernova reverse shock. By matching her simulations with observations, she hopes to obtain information about the ambient medium, the supernova ejecta, the pulsar properties, and the energetic particle population injected into the interstellar medium.

Tycho model

One of Williams’ models of the Tycho supernova remnant. [Williams et al. 2017]

Brian Williams (Space Telescope Science Institute) then discussed his three-dimensional modeling of the ejecta from Tycho’s supernova remnant, which I’ve written about in a previous AAS Nova post.

Closing out the session, Colleen Wilson-Hodge (NASA MSFC) gave an overview of the time-domain astronomy done with the Fermi Gamma-ray Burst Monitor (GBM). GBM’s large field of view — and the fact that it scans the sky once every ~90 minutes — has allowed it to detect a number of gamma-ray bursts, as well as to regularly monitor pulsars and galactic transients. In the current era of multi-messenger astronomy, GBM has also been used to follow up on gravitational-wave triggers from LIGO and neutrino detections from IceCube. We can only hope that it will prove successful in similar follow-up campaigns in the future!

M31 gamma rays

Editor’s note: This week we’re in Sun Valley, Idaho at the 16th meeting of the AAS High Energy Astrophysics Division (HEAD). Follow along to catch some of the latest news from the field of high energy astro!

Session: AGN 1

Ehud Bahar (Technion) opened the meeting’s first session on active galactic nuclei (AGN) by discussing eclipses of a different kind than the one we observed on Monday. Light from AGN is often obstructed on its path to us by warm, outflowing, intervening material that absorbs some of the AGN’s light. Bahar explained the difference between what he termed “absorbers” and “obscurers”: absorbers are slow and steady outflows from the AGN that change very little over long timescales. These provide us with the opportunity to probe their detailed physics. Obscurers, on the other hand, are fast-moving and transient outflows, briefly causing dramatic drops in the X-ray flux of the AGN.

Artist’s impression of the tidal disruption event ASASSN-14li, in which a supermassive black hole destroyed a star, launching outflows. [NASA GSFC]

Two speakers in the session discussed the idea of particularly fast outflows from AGN: Michael Nowak (MIT Kavli Institute) presented data on ultrafast outflows moving at 5–20% of the speed of light from the AGN PG 1211+143 (that’s 15,000–60,000 km/s, as compared to more typical outflow speeds of 100–1,000 km/s), and Erin Kara (University of Maryland) discussed what we can learn from ultrafast outflows from tidal disruption events. Kara’s talk demonstrated how we can use our observations of a well-studied tidal disruption event, ASASSN-14li, to learn about how an accretion disk around a black hole can transition from a super-Eddington (especially high) accretion phase that launches winds to a sub-Eddington (lower) accretion phase in which the wind is shut off.

Andrew Fabian (University of Cambridge) wrapped up the session by providing an overview of what we know about AGN coronae — the incredibly luminous, compact regions that lie directly above the accretion disks of supermassive black holes. Coronae are the source of the majority of the hard X-ray emission from AGN, and we have used observations of this emission to constrain the size of AGN coronae to a mere 10 gravitational radii. We’ve learned that coronae are extremely hot, at 30–300 keV, and are highly magnetized and dynamic, likely containing outflowing plasma.

Session: The Very High Energy Universe as Viewed with VERITAS and HAWC

HAWC

The HAWC detector array with the Pico de Orizaba in the background. [Jordanagoodman]

The session on very high energy observations opened with a talk by Brenda Dingus (LANL). Dingus introduced us to the High Altitude Water Cherenkov (HAWC) gamma-ray observatory, a new observatory located in Mexico that maps the northern sky in high-energy gamma rays. HAWC has a wide field of view, observing roughly 2/3 of the sky each day with long integration times. This means that the observatory is sensitive to the highest energy gamma rays. HAWC has recently released its very first catalog, 2HWC, and this is only the beginning — there is much more science expected from this observatory in the future!

The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is another high-energy observatory, located in southern Arizona; Philip Kaaret (University of Iowa) provided us with an overview of this set of telescopes. VERITAS has a narrower field of view than HAWC, but its sensitivity and angular resolution are higher, allowing it to probe sources at a deeper level. It’s therefore often used for follow-up observations of known targets.

So what sources are high-energy observatories like VERITAS and HAWC observing? They hunt for photons from astrophysical sources like supernova remnants, pulsar wind nebulae, active galactic nuclei, gamma-ray bursts, and dark matter annihilation. Oleg Kargaltsev (George Washington University), Sara Buson (NASA GSFC), and Matthew Baring (Rice University) each explained some of the insights we’ve obtained about these objects from observatories like HAWC, VERITAS, Fermi, and MAGIC in conjunction with observatories exploring other wavelengths.

Mid-Career Prize Talk: X-ray Winds from Black Holes

Tuesday afternoon kicked off with the HEAD Mid-Career Prize Talk, given this year by Jon Miller (University of Michigan). Miller spoke in further depth about a topic introduced earlier in the day: winds emitted from black hole disks. He argued that these winds are worth studying because they provide information about how mass is accreted onto black holes, and therefore how the black holes grow and their spins evolve.

The dense and ionized winds from black-hole disks can potentially carry away more mass than is accreted — and this appears to hold true across the mass scale, from X-ray binaries containing stellar-mass black holes to Seyfert galaxies containing supermassive black holes. Miller discussed the different mechanisms that may launch these winds, and how observations indicate that magnetic driving is important, although other forces may also be at work.

Athena

Artist’s impression of ESA’s Athena X-ray Observatory. [ESA]

Miller argued that many tests of disk physics are now within reach of data and simulations, such as measurements of disk magnetic fields. He also showed how extreme settings such as tidal disruption events can provide a unique and interesting regime in which to explore disks and winds, as the mass accretion rate in these events changes drastically on observable timescales.

As a final point, Miller discussed how our understanding of black hole disk winds will change with upcoming observatories. Missions like Xarm, ARCUS, ATHENA, Lynx, etc. will be transformative; ATHENA, for instance, will be able to produce observations outstripping the sensitivity and resolution of any observations obtained so far with current instrumentation, in “less than the time it took you to have lunch today,” Miller explained.

Session: ISM & Galaxies

Xian Hou (Yunnan Observatories) opened the session on the interstellar medium (ISM) and galaxies by discussing our view of M31 (the Andromeda galaxy) with the Fermi Large Area Telescope. M31 is the only other large spiral local galaxy — and it’s nearby, providing an excellent opportunity for resolved analysis of high-energy emission from a large, star-forming, spiral galaxy similar to the Milky Way. The >1 GeV emission tracked by Fermi LAT was found to be concentrated only in the inner region of the galaxy; it is not correlated with interstellar gas or star-formation sites. What could be this emission’s source, then? Hou suggests that possibilities include a population of millisecond pulsars in the galactic center, or annihilation/decay of dark matter.

NuSTAR M31

NuSTAR observations of M31. The bright blue point in the inset is the intermediate-mass pulsar candidate. [NASA/JPL-Caltech]

Later in the session, Ann Hornschemeier (NASA GSFC) provided a complementary discussion of observations of M31 — this time in the form of NuSTAR’s deep survey of of our nearest galactic neighbor. Hornschemeier reminded us that before NuSTAR, we were unable to spatially resolve hard X-ray sources (energies over 10 keV) in other galaxies. Now, with NuSTAR, we can resolve point sources — and their hard X-ray color can help us to identify whether they are black hole X-ray binaries, neutron-star X-ray binaries, pulsars, etc. A number of neutron stars were identified in globular clusters in M31, as well as a particularly high energy source that is likely an intermediate-mass X-ray pulsar.

The work done by Francesca Fornasini (Harvard-Smithsonian CfA) and collaborators explores how low-luminosity AGN activity and star formation in its host galaxy are connected. Is there a correlation between these two types of activity? If there’s a positive correlation, we can infer that AGN feedback suppresses star formation; if there is a negative correlation, both types of activity may be fueled by a common mechanism. On the other hand, there may be no correlation at all! Because AGN are variable, and because the relation between AGN activity and star formation rate can vary with other host galaxy properties like stellar mass and redshift, we need a very large sample that covers the whole phase space to test for correlation. Fornasini and collaborators achieve this by building X-ray stacks from data from 123,000 galaxies in the Chandra COSMOS Legacy Survey. Their work is still underway, but thus far it has revealed no correlation between the black-hole accretion rate and the star formation rate of the host galaxies.

Eclipsed Sun

Editor’s note: This week we’re in Sun Valley, Idaho at the 16th meeting of the AAS High Energy Astrophysics Division (HEAD). Follow along to catch some of the latest news from the field of high energy astro!

A crowd gathers on the lawn at the Sun Valley Resort to view the 2017 total solar eclipse. [Susanna Kohler/AAS Nova]

A Brief Field Report from the Path of Totality

Many professional and amateur astronomers brought telescopes and cameras to view the solar eclipse. [Susanna Kohler/AAS Nova]

As you might have guessed, there weren’t any sessions Monday morning at the HEAD meeting. We 400 astronomers had instead distributed, with some driving to trailheads to watch the eclipse from the end of a wilderness hike, some gathered at the top of the nearby Bald Mountain in the hope of seeing the shadow of the Moon race across the valley, and many collected out on the large lawn behind the resort.

I joined the lawn crowd and enjoyed watching both amateur and professional astronomers alike share their sunspotter and telescope views throughout the morning with the gathering public setting up on the lawn. The crowd was quick to notice the point of first contact, and eclipse glasses came out all around. Over the span of the next ~75 minutes, we all excitedly watched as the Moon crept across the Sun’s face, tree shadows turned into hundreds of tiny crescents, the air started to cool, and the ambient light grew dimmer.

eclipse glasses

Eclipse glasses provided many people with a safe way of viewing the eclipse before and after totality. [Susanna Kohler/AAS Nova]

Eclipse leaf shadows

Tree leaves functioned like pinhole cameras, providing thousands of projections of the eclipsed, crescent Sun. [Susanna Kohler/AAS Nova]

Totality was breathtaking. I’ll be honest: this was my first total solar eclipse, and I really didn’t expect it to live up to the hype. I was wrong. Bailey’s beads and the diamond ring were visible just before totality as promised, the corona lit up the sky in its stunning, sweeping shapes, and pink edges of the Sun’s chromosphere peeked around the side of the Moon, vivid in their color.

If you were in the path of the eclipse — either partial or total — I hope that you had a spectacular experience as well! If you missed it (or if you didn’t!) and you live in the States, now’s a great time to start making plans for 2024. And if you can’t wait that long, you can look to Argentina and Chile in 2019. I’ll see you there — this may have been my first experience in totality, but I can promise you it won’t be my last.

Session: Solar/Stellar Compact I

Scott Wolk (SAO) gave the opening talk of the first official session of the HEAD meeting, discussing what impacts we can observe of exoplanets on their stellar hosts. He demonstrated how tidal interactions between hot Jupiters and their stellar hosts can spin up the stars, and magnetic interactions between the planets and stars can induce active spots on the stars’ surfaces. This in turn can generate stellar flares, which can be energetic enough to strip the atmospheres from the planets.

Renee Ludlam (University of Michigan) spoke about what we can learn from the spectra observed from neutron-star accretion disks. By studying the reflection of X-rays off the inner edge of the accretion disk, we can infer the the location of that inner edge. Ludlam and collaborators used NuSTAR to observe neutron star low-mass X-ray binary systems (binary systems containing a neutron star accreting mass from a donor star) and measure the location of the inner disk edge for each system. They then used these measurements to determine how the inner disk radius changes with changing mass accretion rate, and to learn about the magnetic fields of the neutron stars.

Marianne Heida (Caltech) discussed the observations she and her collaborators made of the low-mass X-ray binary GX 339–4 (thought to be a black hole accreting from a donor star). The team used absorption lines from the donor star — detected in the near-infrared spectrum because the black hole’s accretion disk dominates the spectrum at optical wavelengths — to narrow down the properties of the star and the black hole. They found that the black hole is remarkably lightweight, at only 2.3–9.5 solar masses; we’ll be able to constrain this better when we have better measurements of the system’s inclination.

X-ray flare

The jump in this continuous photon count curve indicates an X-ray flare from a source located in what is probably a globular cluster. [Irwin 2017]

Rounding out the session, Jimmy Irwin (University of Alabama) outlined his observations of two X-ray flares from nearby galaxies. These flares are thought to have been emitted from within globular clusters, and they constitute the most energetic events ever observed from a globular cluster! In spite of their violence, X-ray flares result in a tiny number of photons arriving at our detectors. In one of Irwin’s two sources, the flare consisted of a whopping 10 photons measured in 51 seconds — a singularly unimpressive number until you realize that the normal output from this source is only 83 photons per 95,000 seconds! What kind of source can increase its X-ray luminosity by a factor of >100 on timescales of < 1 minute without blowing itself apart? Irwin suggests that these objects may be elusive intermediate-mass black holes with masses of hundreds of solar masses or more — or they may be smaller black holes or neutron stars that emit at higher luminosities than thought possible for short times, via some mechanism we don’t yet understand.

Session: AGN in Dwarf Galaxies

We care about active galactic nuclei (AGN) in dwarf galaxies because they provide clues that may help us answer a long-standing question: how were the first black holes formed in the early universe? We know that black holes of billions of solar masses and more were able to form within the first billion years of the universe, which means they must have grown from some type of seed. But were they seeded from the direct collapse of halos into black holes (seeds of tens of thousands to millions of solar masses), or from the deaths of massive, Pop III stars (seeds of 100s of solar masses)?

Dwarf galaxies in the local universe provide us with local analogs of the first galaxies, so observing the supermassive black holes that reside at their centers can provide clues as to how the first black holes formed. It’s for this reason that we want to search for AGN in local dwarf galaxies.

Among the presenters in this session, Amy Reines (Montana State University) discussed how multi-wavelength searches are being executed to find massive black holes in dwarf galaxies. She and her collaborators first analyzed 25,000 optical spectra of dwarf galaxies, finding over 100 galaxies that may host massive black holes. They also used radio and X-ray observations to search for additional cases: weakly accreting black holes that don’t turn up in optical surveys.

RGG 118

SDSS image of RGG 118. [Baldassare et al. 2015]

Vivienne Baldassare (Einstein Fellow at Yale University) talked about how we characterize these possible AGN, and how we can eliminate some candidates that are actually Type II supernovae masquerading as AGN. She also discussed one candidate in particular, RGG 118, which happens to be the smallest black hole ever found in the nucleus of a galaxy, weighing in at a mere 50,000 solar masses.

Brendan Miller (College of St. Scholastica) presented on how the local supermassive black hole occupation fraction — i.e., the fraction of local galaxies that contain supermassive black holes at their centers — can provide insight into how the first supermassive black holes formed. Dwarf galaxies are again key: if we can better pin down the occupation fraction for low-mass galaxies, we will be able to differentiate between the direct-collapse and death-of-a-massive-star models for early black-hole formation. Miller argues that our current sample of black holes in dwarf galaxies isn’t large enough to make this distinction, but upcoming survey results may push us over that limit.

NuSTAR Sun

Greetings from the 16th meeting of the High Energy Astrophysics Division (HEAD) of the American Astronomical Society in Sun Valley, Idaho! This week, I will be writing updates on just a few of the events at the meeting and posting each morning. The usual posting schedule for AAS Nova will resume next week.

Public Talk: Revealing the Hidden High-Energy Sun

Dr. Rachel Osten giving her public talk in Sun Valley.

The HEAD meeting unofficially kicked off this afternoon with a public talk given by Rachel Osten of the Space Telescope Science Institute. Osten’s lecture provided the public with an explanation of why 400 high-energy astronomers have invaded their small ski-resort town: because Sun Valley lies in the path of totality for August 21st’s solar eclipse, and eclipses mean exciting opportunities for high-energy science!

Osten pointed out that astronomy has a long, hallowed history of demonstrating that we aren’t that special. We’ve learned that the Sun doesn’t revolve around Earth, that we’re not located in a special center of the universe, and the matter we’re made up with isn’t even the dominant type of matter in the universe! But eclipses — this is a case where we are special. The fact that the Moon is 400 times smaller than the Sun, but also 400 times closer — such that the two bodies have the exact same angular size — is extremely lucky. No other planet in our solar system experiences eclipses like what we get to witness on Earth.

Examples of science that can be done during eclipses, as discussed by Osten. [Nature]

So what science can be done when the Sun’s disk is blocked by the Moon? This is an excellent time to observe the solar corona, which is normally too faint to be seen when the Sun’s disk isn’t blocked. The corona — the Sun’s outer atmosphere — is 1–3 million Kelvin. This incredibly hot, magnetized gas can take a variety of shapes depending on our timing within the 11-year solar cycle, and it can change rapidly based on the localized solar activity.

Osten herself studies the hot coronae of other stars besides our Sun. The high levels of activity in young stars in Orion, for instance — complete with X-ray flares with temperatures of 50–100 million Kelvin — can reveal information about what the Sun was like in its earlier years. And the behavior of the coronae in stars that host planets is important to know to determine the planets’ habitability: if stars emit too many X-ray flares, for instance, they can strip their planets’ atmospheres.

The diamond ring during a total solar eclipse in 2009 in Japan. [kubotake]

The lecture concluded with an overview of what we can expect when we view the solar eclipse Monday morning. A few things to look for include: a drop in temperature of up to ~10°F as totality approaches, changes in animal behavior, changes in wind speed and direction, crisper shadows as totality nears, and a diamond ring and Bailey’s beads just before totality.

As a final word, Osten urged us all to enjoy the eclipse. During the question session, an audience member asked what data she’ll be taking as a professional astronomer during the event. Her paraphrased response: “Tomorrow I won’t be a professional astronomer. I’ll be an amateur astronomer with all of you, being awed by the experience.” I look forward to the same!

 

AAS

Are you an astronomy graduate student who’s interested in science communication? Do you wish you had the opportunity to explore that interest and gain professional development without having to take time off from your graduate studies? Do you want to write for AAS Nova, report on astronomy meetings, and interface with the science news media?

Then the AAS Media Fellowship might be for you! This position is brand new, and was developed by the American Astronomical Society to provide training and experience for a graduate student in the astronomical sciences interested in science communication. The fellowship is a remote, quarter-time, one year (with the possibility of extension to two years) position intended to be filled by a current graduate student at a US institution. The fellowship will begin in Fall 2017.

If this sounds like a good fit for you, you can get more information below or at the job register posting. Apply by 31 August 2017 by submitting your contact information, advisor approval, a cover letter, and a short CV to personnel@aas.org. See the job register posting for the full application details.


Essential Duties & Responsibilities

The AAS Media Fellow will report to the AAS Press Officer and the AAS Nova Editor. The Fellow will work the equivalent of one day per week (on a schedule that will be jointly developed and agreed upon by the Fellow, the AAS Press Officer, and the AAS Nova Editor) and be responsible for a wide range of duties. The Fellow will be expected to:

  • Assist in operating the AAS press release distribution service.
  • Regularly write and publish articles for AAS Nova.
  • Occasionally help to prepare other written communications such as AAS or Division press releases.
  • Assist in managing AAS communications such as social media accounts, postings to the AAS website, and emails to members or authors.
  • Serve as backup to the AAS Nova Editor or the AAS Press Officer during absences.
  • At the AAS winter and summer meetings, help the AAS Press Officer plan and run press conferences, help represent AAS Nova, and help to organize the live-blogging coverage of the meeting by Astrobites and AAS Nova.

Qualifications

The Fellow must:

  • Be a graduate student in good standing in the astronomical sciences or a related field at a U.S. institution.
  • Receive the approval of their advisor or department chair to apply.
  • Receive their primary support from their home institution.
  • Have a keen eye for detail and accuracy.
  • Have the ability to absorb complex material, synthesize information, and write short articles that concisely reflect key points of the material to a target audience.
  • Have good working knowledge of, and/or ability to quickly master, tools such as WordPress, Microsoft Office, Adobe Creative Suite, Drupal, and Google Apps.

Compensation

The stipend for this position is $7,500 per year for the equivalent of one day of work per week, payable on a quarterly basis. Travel support will also be provided for travel to the summer and winter AAS meetings.

space weather

Editor’s Note: This week we’re at the 230th AAS Meeting in Austin, TX. Along with author Benny Tsang from astrobites.com, I will be writing updates on selected events at the meeting and posting each day. Follow along here or at astrobites.com. The usual posting schedule for AAS Nova will resume next week.


Plenary Session: Space Weather: Linking Stellar Explosions to the Human Endeavor (by Benny Tsang)

Our morning speaker Delores Knipp was an Air Force officer and meteorologist, and she is currently a space weather scientist in the Aerospace Engineering Sciences Department of the University of Colorado. Space weather refers to the effects of the Sun (stellar physics) on the space environment (aerospace engineering) and on Earth’s upper atmosphere (meteorology) — and consequently on our society and technology (navigational instruments and spacecraft operations). Knipp’s broad background is not only extraordinary but is also necessary for the multidisciplinary nature of space weather.

Knipp outlining the major contributors of space weather.

The main causes for space weather are the energetic particles, radiation, and ejecta from stars and stellar explosions. Energy from space is vital to our well-being when it comes in mild and controlled doses, like the warm morning sunlight. However, out in space without the protective magnetic field of the Earth, a single energetic cosmic ray could destroy an instrument onboard an aircraft or damage the cells in a human body.

We can introduce redundancy (multiple copies of the same instruments) on airplanes and spaceships to ensure more reliable operations. However, for more long-duration interplanetary travels, we have to first understand the hostile environments out there. Moreover, flares and ejecta from low-mass stars have crucial implications for the habitability of planets outside our solar system. As an explorative species, space weather holds the key to our future (and gives us spectacular aurorae too!)


Plenary Session: AAS Education Prize: Growth of Astronomy Education in Chile: A Late But Successful Story (by Benny Tsang)

This plenary talk was unlike any other talks I attended in academic meetings; it felt like a superhero movie. Hernán Quintana (Pontificia Universidad Catolica) is the winner of this year’s AAS Education Prize for his devotion and accomplishment in bringing upper education and astronomy into Chile. We are all used to seeing superheroes meandering through impossible circumstances and somehow saving millions. Quintana is not far from that.

Quintana illustrating the growth of astronomy postdoc and faculty member population in Chile.

Astronomers are no strangers to Chile; this country is the key attractor of the largest astronomical investments in the world. The Very Large Telescope (VLT), Atacama Large Millimeter/submillimeter Array (ALMA), and the next-generation Extremely Large Telescope (ELT) all call Chile home. The high-quality sky conditions make Chile a wonderland for astronomy. However, due to many historical and internal barriers, development of astronomy in Chile had been slow.

Quintana built astronomy in Chile from almost nothing. An old policy in Chile required that admissions to astronomy BA and Master’s programs be limited by the number of future positions. As silly as it sounds, this policy took growth entirely out of the question. Budget reductions and economic crises in the 1980s further hindered plans for higher education in general. But by slowly building a growth mindset in the government and universities, gathering resources in every imaginable way, and initiating international collaborations, Chile has now become one of the fastest growing astronomy communities in the world.

International collaborations with France, China, and Germany are all active projects researchers should keep an eye on. Thanks to Quintana there are even new endeavors in Chile beyond astronomy, including the development of detectors, mm-wavelength technology, and weather models for planning of observations. In the years to come, Chile is going to need ~300 astronomers to make good use of the new large telescopes!


AAS Hack Day (by Benny Tsang)

Whitley guiding us through the new tutorial for exploring K2 datasets.

This AAS Hack Together Day was a fun one! From 9:30 am to 3:00 pm, astronomers brainstormed and conquered their hack projects. Here’s a rundown on what they have accomplished. Given the amount of time they had, their work is truly impressive.

Indahl demonstrating the automatic spectral fitting program. It fits spectra very quickly!

 

 

 

 

Michael Gully-Santiago (NASA Exoplanet/Kepler) and Jena Whitley (UT Arlington) developed a learner-friendly pathfinder Python tutorial for future K2 (Kepler) and Astropy tutorials. Also thanks Gully for walking me through some cool Python packages for data visualizations — they will come in handy for my own research!

The UT Austin team of Briana Indahl, Yao-Lun Yang, and Sam Factor put together an automatic spectral fitting routine for emission lines from galaxies.

Rachael Livermore (UT Austin), Ashley Pagnotta (AMNH), and Jeffrey Silverman (SambaTV) coded and sewed a clothing-ready LED set that shined like observed supernovae!

Young showing us the final product — a space pocket square with Hubble images on both sides.

Lastly, the Arizona State University team Patrick Young and Karen Knierman’s created a supernova pocket square (Thanks Rachael for providing the gorgeous images and fabrics)!

Kelle Cruz (CUNY Hunter College & AMNH) is to thank for organizing and coordinating the hack day event. It is in events like these that new ideas and collaborations take shape.

See you at the next AAS meeting in Washington, DC. It’s my pleasure blogging with y’all!

Sunspots

Editor’s Note: This week we’re at the 230th AAS Meeting in Austin, TX. Along with author Benny Tsang from astrobites.com, I will be writing updates on selected events at the meeting and posting each day. Follow along here or at astrobites.com. The usual posting schedule for AAS Nova will resume next week.


Plenary Session: George Ellery Hale Prize, The Solar Magnetic Field: From Complexity to Simplicity (and Back) (by Benny Tsang)

The morning plenary session started with the George Ellery Hale Prize presentation of our speaker Manfred Schüssler (Max Planck Institute for Solar System Research) for his “outstanding contributions over an extended period of time to the field of solar astronomy”. Eugene Parker, who first discovered the magnetism and polarity of sunspots and who we named NASA’s new Sun-touching spacecraft after, was the first scientist to have received this honor. Today Schüssler led us on a journey to disentangle the Sun’s complex magnetic field with simple models — can this really be done?

Sun

Zoomed-in images showing the complex structures within structures on the Sun’s surface. [NAOJ, JAXA, NASA]

To get a sense of the level of complexity in the magnetic structures of the Sun, let’s first take a look at some images. On the seemingly simple and boring surface, we see tiny features around sunspots (middle panel) and granules (hot, rising pockets of gas; right panel). In addition, all these are highly turbulent and dynamical, so we are faced with the challenge of explaining a hierarchy of time-varying complexities on a wide range of scales.

Numerical simulations have tried to reproduce the observed features by including physics at different scales — from the near-surface layer, to the deeper layer where the magnetic field is believed to be created, to the whole convection zone. Although simulations are not perfect in reproducing all features, Schüssler stressed that they offer an otherwise unavailable 3D view of the Sun, which allows new questions to be asked. Among all, the small-scale dynamo model shows the most promising prospects for explaining most of the observed small-scale structures. This dynamo process is so fundamental that it is believed to prevail even when the first generation of stars were born.

The Sun can be quite predictable in its own way. The highly regular, 11-year cycle of sunspot activity and the 22-year field direction reversal are two examples. Such regularities can be understood by the Babcock and Leighton (BL) model pretty well, which describes the activities as driven by the twisting of magnetic field lines in the Sun by its rotation. That said, the full picture of Solar magnetism is still far from being complete. As an example, Schüssler noted that the emergence of magnetic field deeper in the Sun (flux emergence) assumed in the BL model seems to be extremely complex in and of itself. Future scientists, I think we could really use some help here.


Press Conference: Bending & Blending (by Benny Tsang)

The last press conference of this AAS meeting featured two speakers and had a rather enigmatic title: Bending and Blending. To summarize in one sentence, it was about the bending of light by a white dwarf, and the blending of a suite of versatile tools for better data visualization.

Kailash Sahu (Space Telescope Science Institute) led the discussion of a truly exceptional microlensing event. One of the crucial tests of Einstein’s theory of general relativity is the bending of light around massive objects. Unlike typical gravitational lensing by clusters of galaxies, microlensing events are caused by objects with stellar or planetary masses. Sahu’s team observed a foreground white dwarf (Stein 2051 B) deflecting light of a background star. By analysing the images formed by this “white dwarf lens”, they estimated its mass to be 0.675 times the mass of the Sun (with ~7% error). Until this discovery, all mass estimates of white dwarfs have relied on binary systems. Sahu’s discovery opened up a new way to measure white dwarfs’ masses, which could empower many new discoveries in astronomy. [Full press release]

Aside: If you wish to do your personal gravitational lensing observation, there’s a chance during the upcoming total Solar eclipse event on Aug 21. We can all be part of it!

Kent showing examples of visualization projects by astronomers. This includes the making of protoplanetary disks, galaxy mergers, N-body simulations, and a fly-through of a 3D source catalog!

Next, Brian Kent (National Radio Astronomy Observatory) illustrated the multi-purpose, well-documented, scientific data visualization tool he built, known as Blender. Data from multi-wavelength observations and advanced supercomputer simulations have been growing in both size and complexity. Not only is visualization required to help communicate new discoveries to the general public, but scientists themselves rely heavily on efficient visualization tools to make discoveries in the first place. Recently Kent has even combined Blender with Google Spatial Media to “put data in the hands of the audience” — data visualization on users’ mobile devices. We can start making our own scientific art pieces now by following the tutorials and reading the new Blender book! [Full press release]


Plenary Session: CANDELS: A Cosmic Quest for Distant Galaxies Offering Live Views of Galaxy Evolution (by Benny Tsang) 

Inventor of photometric redshift measurement David Koo (University of California, Santa Cruz) told the story of the cosmic quest to understand galaxy formation. Having recently retired to “finally do research full-time”, Koo started by clarifying a common question about the CANDELS program — the name ‘CANDELS’ is indeed an intentional misspelling to avoid generic results on search engines. CANDELS is a Hubble Space Telescope legacy survey with an unprecedented amount of data, providing both wide and deep coverage of galaxies. The entire image database consists of 250,000 galaxies from redshift of 1.5 to 8.

HUDF

A small patch of the Hubble Ultra Deep Field image showing variations of environments and galaxy types within just a single image. [Image credit: HUDF/HST]

Why do we want to get yet more data on distant galaxies? It is obvious from a quick glance at the Hubble Deep Field that cosmic environments vary a lot — we see galaxies of different shapes and colors! Moreover, galaxies cannot be neatly divided into discrete types; they interact with each other and evolve. A large amount of data is therefore needed to cover a representative volume of the Universe in order for a galaxy evolution study to make sense.

With complementary coverage by Herschel and Spitzer (infrared), Chandra (X-ray), and GALEX (ultraviolet), we earn the bread and butter for galaxy evolution, e.g. stellar mass, size, star formation rate, and morphology. In particular, the addition of the X-ray band provides important hints about galaxies’ central supermassive black holes. An important component of the CANDELS program is the inclusion of theorists working with N-body and hydrodynamical simulations. By reproducing observed galaxies from first principles, simulations allow us to track them back in time (like rewinding a movie) to see the processes of their evolution.

Koo Family

Koo attributed the success of the CANDELS collaboration to their strong “family values.”

Throughout the talk Koo filled the entire hall with his warmth, and he didn’t hesitate to give thanks to his team. Besides the principal investigators Sandra Faber (who has won the Bruce Gold Medal, the “cosmology Nobel prize”) and Henry Ferguson, he also thanked astronaut Andrew Feustel for installing the camera that made CANDELS possible! With the prospects of new telescopes such as JWST, ALMA, SKA, and those of decades to come, Koo echoed Casey on Day 1, envisioning that detailed mapping of gas and dust is the future of astronomical observations.

Mars landing

Editor’s Note: This week we’re at the 230th AAS Meeting in Austin, TX. Along with author Benny Tsang from Astrobites, I will be writing updates on selected events at the meeting and posting each day. Follow along here or at astrobites.com. The usual posting schedule for AAS Nova will resume next week.


Press Conference: Inconstant Stars (by Benny Tsang)

Our morning press conference featured four new studies on variable stars, ones that don’t shine steadily. The first presentation was by Rodolfo Montez from the Smithsonian Astrophysical Observatory, who spoke about a symbiotic system (a variable binary star system with a red giant transferring mass to a white dwarf) called R Aquarii. The key discovery is a large-scale X-ray jet structure on the northern side of the system, as revealed by the Chandra telescope. This discovery helps us piece together a more complete historical record of the jet ejection, crucial for understanding the connection between jets and binary orbits. [Full press release]

Eclipsing CV

Light curve of Kirkman’s eclipsing Cepheid variable showing the dual-modulation in brightness.

Thomas Kirkman (St. John’s University) then shared a puzzling result he found with his group of undergraduate researchers. Their target of observation was an eclipsing Cepheid variable in the Milky Way (TYC 1031 1262 1). A Cepheid variable is a pulsating star that changes in brightness as it expands and contracts. When Cepheid variables are in binary systems, variability due to pulsation is complicated by eclipses by the dim star, adding another level of modulation in brightness (see the light curve in the figure). Kirkman and his group found that the binary system exhibited a decreasing period (took longer and longer to go around), whereas previous observers had found an increasing trend. These results suggest a puzzling oscillation in the orbital period — something that definitely calls for more follow-up!

The next remarkable discovery was a pre-cataclysmic variable with the shortest period found to date (WD 1202-024), reported by Lorne Nelson from Bishop’s University. The variable brightness can be modeled very well as a white dwarf with a brown dwarf companion. Since only about 1% of white dwarfs have brown dwarfs as companions, this is indeed a rare find. The lack of mass transfer (what causes cataclysmic variables to vary in brightness) signatures is the reason that we call it a “pre-cataclysmic” source. It is speculated the binary orbit will shrink in size by emitting gravitational waves and become a real cataclysmic variable. But we may have to wait for ~250 million years before it happens.

GALEX (the Galaxy Evolution Explorer) is an all-sky surveying spacecraft built to observe the night sky in ultraviolet wavelengths, which can distinguish photons arriving 0.005 second apart! Its high sensitivity allows short-timescale brightness variations to be detected from low-mass cool stars. Chase Million (Million Concepts) has built a brand-new data analysis pipeline engineered to search GALEX data for flares from cool stars. It turns out that many of these flares, both big and small, were found. Habitable planets lie closer to cooler stars, so the energy from the flares might impinge on these planets’ surfaces. The discovery of the many flares in the GALEX data therefore has critical implications for the general habitability of other worlds. [Full press release]


Plenary Session: Our Future in Space (by Susanna Kohler)

Wan Hu

Wan Hu, a Chinese official who allegedly attempted to travel to the Moon. [US Civil Air Patrol via NASA]

This afternoon, Chris Impey of University of Arizona gave a fiery overview of the history of space exploration, where we stand now, and where we’re headed in the future. Impey opened with a summary of the alleged first space-travel attempt in 1550: a Chinese official attempted to travel to the Moon in a wicker chair with 47 rockets attached. Unsurprisingly, it didn’t end well. Though this story is almost certainly a fictional account, the same message came through again and again as Impey walked us through the space travel history of the 20th century: going to space is hard, astronaut mortality rates are high (3–4%), and we’re well aware of the challenges. Nevertheless, we continue to find this an endeavor worth tackling.

Current prospects in the U.S. are looking progressively bleaker for government-driven space exploration. Past programs — like the Space Shuttle — are disappearing, and the budget for new programs is shrinking. The cost of space missions suddenly seems much more manageable when you change perspective, however: Impey made the unexpected comparison of space-mission costs relative to the production budget for major movies. Guess which one is, on average, larger today?

So if you can front the money for a movie about going to space, why not instead front the money for the actual mission to space? This is the thinking behind the new private-sector-driven era of space exploration.

Major companies like Space X and Blue Origin are putting themselves on the map, and programs like Google’s Lunar XPRIZE have encouraged an expanding field of players. Commercial space travel is becoming ever more prevalent; a total of 7 space tourists have gone up to spend a vacation at the ISS, for instance, paying millions of dollars for the privilege. And roughly two years ago marked the first time in our history that the majority of space launches to low-Earth orbit were commercial — a significant milestone.

So what does the future hold? Impey believes that space exploration will continue to be driven primarily by the private sector. Some of his rapid-fire predictions for the future include successful asteroid mining endeavors, development of a permanent Mars colony, tourism to Europa, and exploration of Alpha Centauri. As for whether or not these things will actually come to pass — we’ll just have to wait and see.

You can find out more about Impey in this interview by Amber Hornsby.


Press Conference: Galaxies, Clusters & Voids (by Susanna Kohler)

This afternoon’s press conference launched with a presentation by Jason Chu (University of Hawaii Institute for Astronomy) on a peculiar breed of galaxies: Luminous Infrared Galaxies, or LIRGs. LIRGs are extremely bright, emitting hundreds of billions or even trillions of solar luminosities in primarily infrared wavelengths. Many are interacting or merging galaxies — and as such, they’re much more common in the early universe (when galaxies were more likely to run into each other since the universe was smaller). Nearby LIRGs, however, offer a useful opportunity to study what’s happening in these galaxies in detail. Chu presented a series of far-infrared observations from Herschel mapping the 200 brightest LIRGs in the nearby universe as part of the Great Observatory All-sky LIRG Survey (GOALs). The observations of the GOALS sources are publicly available, and scientists can use the data to explore properties of these galaxies that were previously impossible to measure. [Full press release] [Original article]

Hubble LIRGs

Hubble images of six distant ultra-bright infrared galaxies, which are gravitationally lensed by foreground galaxies. [NASA, ESA, and J. Lowenthal (Smith College)]

Local LIRGs may be great for detailed viewing — but are we resigned to seeing more distant, early-universe LIRGs as merely fuzzy blobs? Not at all! James Lowenthal (Smith College) next told us about how Hubble is being used to explore the brightest infrared/submillimeter galaxies in the universe. Lowenthal and collaborators are in the process of obtaining stunning Hubble images (is there really any other kind of Hubble image?) of distant LIRGs that have been gravitationally lensed by foreground galaxies. He even showed us the most recent, never-before-seen image that came in during this meeting! By modeling the distorted images of the background LIRGs, scientists hope to unscramble the true shape and nature of these distant, bright, star-forming galaxies. Bonus thought for the day: Lowenthal pointed out that all distant galaxies are probably gravitationally lensed to some extent — not just the ones where the effects are obvious (like Einstein rings). “We’re looking at the universe through sheets of wiggly glass.” [Full release here]

Next up, Jack Burns (University of Colorado Boulder) discussed “banging” galaxy clusters. In particular, he presented observations of a specific cluster: Abell 115, located 2.4 billion light-years away. Abell 115 is actually a violent early-stage collision of two subclusters, each containing hundreds of galaxies. New X-ray temperature maps of Abell 115 reveal a region of incredibly hot (170 million Kelvin) gas in the center between the merging subclusters. Burns suggests that the turbulence of this extreme region may be responsible for the temperature, as the energy of the merging cluster motion is converted into thermal energy by the mixing actions of turbulence. [Full release here]

cosmic voids

This simulation of the universe shows its overall structure of filaments and voids. [Millennium Simulation]

The final presentation of today’s press conference was given by Benjamin Hoscheit (University of Wisconsin, Madison). Hoscheit opened with an intriguing question: do we live in a large local void? Voids are regions of the universe that have lower densities of galaxies, stars, and planets than the average. Some past studies have found observational evidence supporting the view that we are surrounded by a large local void, and Hoscheit presented an interesting consequence of this picture if true: this could explain the tension between different measurements of the Hubble constant, the value that describes the rate at which the universe is expanding. Measurements made using the distance ladder (i.e., local measurements) estimate a value of the Hubble constant significantly higher than that measured using CMB anisotropies (i.e., cosmic measurements). If we indeed live in a local void, this would distort the pull on matter in the local area, explaining why the local estimate of the Hubble constant  is so low. [Full release here]


Plenary Session: Planet Nine from Outer Space (by Benny Tsang)

Orbits of the six long-period Kuiper belt objects (purple) appear to be clustered in one direction. The orange orbit shows the possible orbit of Planet 9. [Image credit: Caltech/Robert Hurt]

Ever since Galileo pointed the telescope to the sky and found the phases of Venus and the four satellites around Jupiter (and many more ground-breaking observations), we have been fascinated by the discoveries of celestial objects around us. By making a strong case for the existence of the yet-to-be-discovered Planet 9, Konstantin Batygin (Caltech) shared his efforts to “make our solar system great again”.

The story started with the discovery of the Kuiper belt, a swarm of rocks going around the Sun beyond the orbit of Neptune. Most of these asteroids’ orbits can be understood with the eight planets we already have. However, when it comes to the bodies with periods longer than 4,000 years, their orbits are absurd — these long orbits seem to cluster together in space (the purple orbits in the figure), which is statistically extremely unlikely to occur by chance.

It gets more and more intriguing as we have discovered more and more anomalies in our solar system.

  1. Sedna (2003 VB12) and Biden (2012 VP113) are two Kuiper belt objects with large orbits that never get too close to Neptune. Traditional theories on the early evolution of our solar system can’t explain the existence of such objects.
  2. Kuiper belt objects have been discovered with orbits nearly perpendicular to typical planets. This also can’t be explained by our eight-planet solar system.
  3. A mysterious object called Niku was found to orbit the Sun with a retrograde (moving opposite to nearly everything else in the Solar system), near-circular, and extremely tilted orbit.
  4. The Sun’s rotational axis was found to have a 6° misalignment with the global orbital axis of the eight known major planets.

All these “small enough to ignore, big enough to be relevant” anomalies could be explained by adding a planet with ~10 Earth masses in an orbit of ~500 AU — Planet 9! Using numerical simulations, Konstantin has successfully reproduced every single one of these anomalies. Whether we will find Planet 9 is still up in the air (in space I mean), but Konstantin’s remarkable discoveries have already made the Solar System great if you ask me! Konstantin is also a rockstar; don’t forget to check out his interview with Amber Hornsby.


Plenary Session: Flows and Flares Around the Nearest Supermassive Black Hole — Sgr A* (by Susanna Kohler)

Did you know that our galaxy likely once hosted an active galactic nucleus? The Milky Way’s central supermassive black hole, the four-million-solar-mass Sgr A*, is much quieter today — but it still exhibits a little bit of action. Daniel Wang (University of Massachusetts) took the last plenary session of the day as an opportunity to catch us all up on some of the activity around the central black hole in our galaxy.

Why do we care about Sgr A*? Besides the intrigue of learning about our local environment, Sgr A* has the benefit of being observable. While the nuclei of other galaxies may be only a few pixels in our observations, we’re able to observe the central region of our galaxy on a broad range of scales. On arcminute scales, we can see the central star cluster and colliding stellar winds. Zooming in to a few arcseconds we can see the actual motion of stars as they orbit Sgr A*. And in the future, we hope to even get down to scales where we can resolve the shadow of the black hole itself, using effectively an Earth-sized telescope called the Event Horizon Telescope. What we learn about the center of the Milky Way by studying the region around Sgr A*, we can hopefully apply to understand the nuclei of more distant galaxies.

galactic center

A labeled Chandra view of the galactic center. [NASA/CXC/UMass/D. Wang et al.]

Over the span of his talk, Wang introduced us to a number of studies of activity near Sgr A* — including both flares and quiescent emission. The bulk of Sgr A*’s quiescent emission comes from the outer regions around the black hole (i.e., 10,000–100,000 Schwarzschild radii away); this is in contrast to active galactic nuclei, in which the innermost regions dominate the emission. Interestingly, the outflow from Sgr A* very nearly balances the inflow, with less than 1% of the accreting matter actually falling into the black hole.

Sgr A*’s activity becomes even more interesting when we look at its flaring behavior. We’ve observed about 100 X-ray flares total (mostly with Chandra, XMM-Newton, Swift, and NuSTAR), and we estimate that Sgr A* probably flares at a rate of about two times per day. These flares typically last only about an hour in X-rays. What causes them? Wang presents two possibilities: the more mundane solution of magnetic reconnection (as is the case with solar flares), and the sexier alternative of tidal disruption of asteroids. The latter model fits the data slightly better in terms of the flare distributions and their durations, but the emission models haven’t been developed enough to say anything with certainty yet.

To conclude, Wang walks through the big picture of the life cycle of galactic nuclear activity, which begins with cold gas accretion. This leads to star formation and resulting strong hot cluster winds, which then blow out the remaining cold gas and turn off accretion. When the winds weaken, the cycle can begin anew. This cycle is regularly interrupted by disruptions of passing asteroids, planets, stars, or dense clouds.

You can read more about Wang in this interview by Chris Faesi.

1 16 17 18 19 20 22