Editor’s note: AAS Nova is on vacation until 22 September. Normal posting will resume at that time; in the meantime, we’ll be taking this opportunity to look at a few interesting AAS journal articles that have recently been in the news or drawn attention.
What’s inside the dense interior of a neutron star, the remnant left behind at the end of a massive star’s evolution? Scientists have now searched for the answer to this question using new observations of an extreme neutron star from NASA’s Neutron star Interior Composition Explorer (NICER).

Scientists think neutron stars are layered. As shown in this illustration, the state of matter in their inner cores remains mysterious. [NASA’s Goddard Space Flight Center/Conceptual Image Lab]
These new results, combined with previous measurements of other neutron stars, are helping us to understand whether neutron stars are made up primarily of neutrons in their interior, or whether the pressure is so great that those neutrons have disintegrated into a soup of particles called quarks. A study led by Geert Raaijmakers (University of Amsterdam) uses these observations to place significant constraints on the so-called neutron star equation of state, which describes neutron star interiors.
To learn even more about this work, be sure to check out the summary video from NASA’s Goddard Space Flight Center below.
Original articles:
“The Radius of PSR J0740+6620 from NICER and XMM-Newton Data,” M. C. Miller et al 2021 ApJL 918 L28. doi:10.3847/2041-8213/ac089b
“A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy,” Thomas E. Riley et al 2021 ApJL 918 L27. doi:10.3847/2041-8213/ac0a81
“Constraints on the Dense Matter Equation of State and Neutron Star Properties from NICER’s Mass–Radius Estimate of PSR J0740+6620 and Multimessenger Observations,” G. Raaijmakers et al 2021 ApJL 918 L29. doi:10.3847/2041-8213/ac089a
Press releases:
University of Maryland: NASA’s NICER Probes the ‘Squeezability’ of Neutron Stars
University of Amsterdam: Astronomers Measure Heaviest Known Neutron Star With Telescope on ISS