Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.
Colliding Supernova Remnant
After a stellar explosion, the supernova’s ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays — high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernova’s explosion power goes into accelerating these cosmic rays?
In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.
Pass 8 to the Rescue
Observational tests of this model, however, have been stumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though we’ve looked, gamma-ray emission has never been detected from this galaxy … until now.
In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!
Acceleration Efficiency

Gamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220’s luminosities are consistent with the scaling relation. [Peng et al. 2016]
Under these two assumptions, Peng and collaborators use the gamma-ray luminosity and the known supernova rate in Arp 220 to estimate how efficiently cosmic rays are accelerated by supernova remnants in the galaxy. They determine that 4.2 ± 2.6% of the supernova remnant’s kinetic energy is used to accelerate cosmic rays above 1 GeV.
This is the first time such a rate has been measured directly from gamma-ray emission, but it’s consistent with estimates of 3-10% efficiency in the Milky Way. Future analysis of other ultraluminous infrared galaxies like Arp 220 with Fermi (and Pass 8!) will hopefully reveal more about these recent-merger, starburst environments.
Citation
Fang-Kun Peng et al 2016 ApJ 821 L20. doi:10.3847/2041-8205/821/2/L20
1 Comment
Pingback: Rayos gamma perdidos « SEDA / LIADA